Container Project

Show work for all calculations.

1. A cola company is deciding what dimensions they want to use for their can. They are going to use a cylinder shape. Can A will have a radius of 2.7 cm and a height of 14.6 cm. Can B will have a radius of 3.1 cm and a height of 11.1 cm. Calculate the surface area and volume of each. Round your answers to the nearest hundredth.

Can A	Can B
Surface Area:	Surface Area:
Volume:	Volume:

Which cola can would you choose? Explain your reasoning.

2. A cereal company is looking into two sizes of cereal boxes. The first box is 12 in. x 8 in. x 1.5 in. The second box is 13 in. x 9 in. x 2 in. Calculate the surface area and volume of each.

1 st Cereal Box	2 nd Cereal Box
Surface Area:	Surface Area:
Volume:	Volume:

Which cereal box would cost less per cubic inch of cereal? Show or explain your reasoning.

3. A candy company is choosing between a cylindrical container and a square prism. The cylindrical container will have a diameter of 6 inches and height of 8 inches. The square prism will have dimensions of 6 inches by 6 inches by 10 inches. The material they use to create the containers costs \$0.032/in².

Cylindrical Container	Square Prism Container
Draw the shape and label the dimensions:	Draw the shape and label the dimensions:
Volume: (Round to the nearest hundredth)	Volume:
Surface Area: (Round to the nearest hundredth)	Surface Area:
Cost to produce the container: (Round to the nearest hundredth)	Cost to produce the container: (Round to the nearest hundredth)
Cost per cubic inch of candy: (Round to the nearest thousandth)	Cost per cubic inch of candy: (Round to the nearest thousandth)

The company produces an average of 1,000,000 in³ of candy per week. Based on your answer for the cost per cubic inch of candy, find the cost for 1,000,000 in³ of candy.

Cost per 1,000,000 in ³ of candy:	Cost per 1,000,000 in ³ of candy:

How much money could the company save per week by choosing the square prism container?

Container Project – Answer Key

Show work for all calculations.

1. A cola company is deciding what dimensions they want to use for their can. They are going to use a cylinder shape. Can A will have a radius of 2.7 cm and a height of 14.6 cm. Can B will have a radius of 3.1 cm and a height of 11.1 cm. Calculate the surface area and volume of each. Round your answers to the nearest hundredth.

Can A	Can B
Surface Area:	Surface Area:
293.49 cm ²	276.59 cm ²
Volume:	Volume:
334.37 cm ³	335.12 cm ³

Which cola can would you choose? Explain your reasoning.

Sample Answer: Can B – It has about the same volume but uses less material.

2. A cereal company is looking into two sizes of cereal boxes. The first box is 12 in. x 8 in. x 1.5 in. The second box is 13 in. x 9 in. x 2 in. Calculate the surface area and volume of each.

1 st Cereal Box	2 nd Cereal Box
Surface Area:	Surface Area:
252 in ²	322 in ²
Volume:	Volume:
144 in ³	234 in ³

Which cereal box would cost less per cubic inch of cereal? Show or explain your reasoning.

The 2^{nd} box uses less material per cubic inch. Surface Area to Volume Ratio: 1^{st} Box: 1.75 in²/in³ 2^{nd} Box: 1.38 in²/in³ 3. A candy company is choosing between a cylindrical container and a square prism. The cylindrical container will have a diameter of 6 inches and height of 8 inches. The square prism will have dimensions of 6 inches by 6 inches by 10 inches. The material they use to create the containers costs \$0.032/in².

Cylindrical Container	Square Prism Container
Draw the shape and label the dimensions:	Draw the shape and label the dimensions:
6 in 8 in	10 in 6 in
Volume: (Round to the nearest hundredth)	Volume:
226.19 in ³	360 in ³
Surface Area: (Round to the nearest hundredth)	Surface Area:
207.35 in ²	312 in ²
Cost to produce the container: (Round to the nearest hundredth)	Cost to produce the container: (Round to the nearest hundredth)
\$6.64	\$9.98
Cost per cubic inch of candy: (Round to the nearest thousandth)	Cost per cubic inch of candy: (Round to the nearest thousandth)
\$0.029/in ³	\$0.028/in ³

The company produces an average of 1,000,000 in³ of candy per week. Based on your answer for the cost per cubic inch of candy, find the cost for 1,000,000 in³ of candy.

Cost per 1,000,000 in ³ of candy:	Cost per 1,000,000 in ³ of candy:
\$29,000	\$28,000

How much money could the company save per week by choosing the square prism container? About \$1,000